

Page 1 of 12

SINGLE SIGN-ON

FOR (APEX) APPLICATIONS

USING OAUTH2

Author: Niels de Bruijn
Version: 3.0
Date: 26-JAN-2021

Page 2 of 12

1 INTRODUCTION

A feature called “Social Sign-In” was introduced in APEX 18.1 which handles authentication based on

the OAuth2 standard. Although the name suggests that it can only be used with Facebook & Co. as

authentication provider, you can also use it with ie. Azure Active Directory or any other authentication

provider that can handle OAuth2.

This document will explain the process flow for authentication based on OAuth2 as well as the

implementation steps to undertake to achieve this goal when using Azure AD as authentication

provider.

2 ARCHITECTURE & PROCESS FLOW

Here is what happens in detail when you access an APEX app protected by OAuth2 also known as

“Authorization Code Flow”:

0. APEX is registered once as OAuth2 client at the provider. The given client ID (=app username) and

client secret (=app password) are stored as “Web Credentials” on APEX workspace level.

1. The user accesses an APEX app ie. https://apex.mt-ag.com/ords/f?p=123:1.

2. APEX creates a session for “nobody” and checks if the page requires authentication. If so, the

details of the current authentication scheme are retrieved from the metadata. If OpenID is used as

authentication provider, the discovery URL is used to retrieve the endpoint/token/user info URL with its

parameters. If “generic OAuth2 provider” was selected, these URLs have to be entered in APEX. The

user is redirected to the authorization endpoint URL.

https://apex.mt-ag.com/ords/f?p=123:1

Page 3 of 12

3. The user logs in ie. using username/password.

4. Depending on the provider used, the user may also need to explicitly consent access to resources

like e-mail, street, ZIP code, etc.

5. After authentication, an authorization code was returned by the provider with which the browser is

redirected to the APEX callback URL https://apex.mt-ag.com/ords/apex_authentication.callback.

6. APEX contacts the token endpoint URL over HTTPS thereby passing the authorization code, the

client ID and client secret.

7. The provider returns an access token together with a refresh token, optionally an ID token as well.

All tokens are stored in APEX.

8. Optionally, the user info endpoint URL is used to get additional information about the user. The

provided “scope” determines the set of information requested. This additional information is returned in

a JSON document. All attributes together with the ID- & access token are stored in

APEX_JSON.G_VALUES.

Starting with APEX 20.2, the additional information can be mapped automatically to APEX items by

APEX, so no coding is required to retrieve these values.

9. APEX retrieves the username from the tokens (access/ID), or the data from the user info endpoint.

APEX then authenticates the user in the session and redirects to the originally requested page (step

1).

10. A subsequent browser request for an APEX page now includes an APEX session cookie (next to

the session ID in the URL) with which APEX can identify the user with. As long as the APEX session is

valid, the user is returned the requested page.

11. The access token is not checked for ie. expiration. Although obtained, the refresh token has no

usage for the authentication process as implemented in APEX 20.2.

3 IMPLEMENTATION STEPS

3.1 PREREQS

Before starting the implementation, make sure that the username in Azure Active Directory (Azure AD)

is the same as used in your local users table (used for authorization purposes).

To start the configuration, you will need Oracle APEX 18.1+ running in Oracle Database 12.2+ and

Azure AD.

All screenshots of Oracle APEX in this document were taken using version 20.2.

3.2 REGISTER THE APEX ENVIRONMENT AT AZURE AD

https://apex.mt-ag.com/ords/apex_authentication.callback

Page 4 of 12

Logon to https://portal.azure.com.

Click on “View” at “Manage Azure Active Directory”.

Within “App registrations”, click on “New registration”.

Fill out the form as shown below and click on “register”. Make sure that the Redirect URI points to your

APEX instance. It should look something like this:

https://apex.mycompany.com/ords/apex_authentication.callback

https://apex.mt-ag.com/ords/apex_authentication.callback

https://portal.azure.com/
https://apex.mycompany.com/ords/apex_authentication.callback

Page 5 of 12

Within “Certificates & secrets”, click on “New client secret”. Note the client secret provided.

3.3 ENABLE OUTBOUND (SSL) COMMUNICATION FROM APEX

Logon with sys as sysdba to the APEX database and execute the following script with the correct

APEX version permitting the database to contact Azure AD when requesting an access token:

BEGIN

 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE

 (host => 'login.microsoftonline.com'

 , ace => xs$ace_type

 (privilege_list => xs$name_list('connect')

 , principal_name => 'APEX_200200'

 , principal_type => xs_acl.ptype_db

)

);

 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE

 (host => 'graph.microsoft.com'

 , ace => xs$ace_type

 (privilege_list => xs$name_list('connect')

 , principal_name => 'APEX_200200'

 , principal_type => xs_acl.ptype_db

)

);

 select privilege

 , grant_type

 , principal

 , host

 from dba_host_aces

 where principal = 'APEX_200200'

 ;

END;

/

Both login.microsoftonline.com as well as graph.microsoft.com are using SSL. When using the

Oracle Database as SSL client, we need to create a SSL wallet and make APEX aware of it.

Get the top root certificate and copy it on the server. For the script below to run properly, we assume

that the file is called Baltimore_Cybertrust_Root.crt and is stored in the directory /opt/wallet.

On the database server where APEX was installed, run:

Page 6 of 12

cd /opt/wallet

orapki wallet create -wallet ssl_wallet -pwd mysecretpassword -auto_login

orapki wallet add -wallet ssl_wallet -cert Baltimore_Cybertrust_Root.crt -pwd mysecretpassword

-trusted_cert

orapki wallet display -wallet ssl_wallet -pwd mysecretpassword

chown -R oracle:oinstall ssl_wallet

Make the created wallet known to APEX. Logon to the internal workspace of APEX. Within “instance

settings” go to the section “Wallet” and enter the file path of the wallet:

As we have created a wallet with the option “auto login”, APEX doesn’t have to be aware of the

password as it will use the *.sso file.

3.4 CREATE WEB CREDENTIALS IN THE APEX WORKSPACE

Logon to the APEX workspace containing the app that should be configured for OAuth2 authentication

against Azure AD.

Click on “Workspace Utilities”.

Page 7 of 12

Click on “Web Credentials”.

Enter the client ID and client secret given by Azure AD.

3.5 CREATE AN AUTHENTICATION SCHEME FOR THE APEX APP

Select the APEX application in the workspace, click on “Shared Components” and create a new

“Authentication Schema” based on Scheme Type “Social Sign-In” and Authentication Provider

“Generic OAuth2 Provider”. The details entered should look like below:

Page 8 of 12

You can get the Endpoint URLs from Azure AD by clicking on “Endpoints” after choosing the app

registration:

After the creation of the 2nd authentication scheme, it automatically becomes the default scheme.

Run the APEX application. After authentication, you will need to explicitly accept that APEX, as a 3th

party app, is allowed to read out your user profile to get the username (in this case

userPrincipalName):

Page 9 of 12

Note: as an admin of Azure AD, you can grant consent for all users to prevent this message from

being shown to the user. Just click on the button “Grant admin consent…” in the “API permissions”

section of the app registration:

After the consent, the APEX app is displayed with the user logged on. In APEX the current user can

be retrieved using the :APP_USER variable.

3.6 SWITCHING AUTHENTICATION SCHEME IN RUNTIME

Since not all users are registered in Azure AD, there should be a separate URL in place with which a

user can logon locally. In this case, username and password are stored in a custom table. The

following steps describe how to switch between authentication schemes in runtime. It will not cover

how to setup custom authentication, as this is already running in production.

Page 10 of 12

For BOTH authentication schemes, enable the option “Switch in Session” in the section “Login

Processing”:

When calling the APEX app with only the application ID, the current authentication scheme will be

used. For example: https://apex.mt-ag.com/ords/f?p=114329.

A specific authentication scheme can be requested through the URL. In our example this is:

APEX authentication:

https://apex.mt-ag.com/ords/f?p=114329:1:<SESSION_ID>:APEX_AUTHENTICATION=APEX_AUTH

AZURE AD authentication:

https://apex.mt-ag.com/ords/f?p=114329:1:<SESSION_ID>:APEX_AUTHENTICATION=AZUREAD_AUTH

Note: due to a “bug” in APEX 19.2, it is not possible to call the URL with the parameter

APEX_AUTHENTICATION directly. You first have to call a public APEX page (to get an APEX

session) before switching the authentication. For APEX 20.2, this bug was fixed.

3.7 LOGGING OUT

To log out of Azure AD, call the URL:

https://login.microsoftonline.com/<Tenant_ID> or common/oauth2/logout

After that, the user should close the browser to explicitly terminate the APEX session.

Note: logging out of Azure AD will also logout the user for all apps connected to that Azure AD tenant.

It is not possible to logout of a specific app residing on the same tenant.

3.8 DEBUGGING

Something doesn’t work as planned and you need to get more info about what is going on under the

hood? Here is a great blog post about debugging all requests:

https://chrisonoracle.wordpress.com/2020/04/03/debugging-apex-authentication-issues/

https://apex.mt-ag.com/ords/f?p=114329
https://chrisonoracle.wordpress.com/2020/04/03/debugging-apex-authentication-issues/

Page 11 of 12

4 GLOSSARY

4.1 ATTRIBUTES GENERIC OAUTH2 AUTHENTICATION SCHEME

The values shown below are just for example purposes. Some of them are only available in APEX

20.2.

Credential Store: the web credentials to use for app-authentication at the authentication provider

(APEX in this case).

Authorization Endpoint URL: the URL of the authentication provider where the user can authenticate

himself and optionally can give his consent to let the application access additional information.

Token Endpoint URL: the URL contacted by APEX to get the access/ID/refresh tokens.

User Info Endpoint URL: the URL contacted by APEX to get additional user information returned as a

JSON Web Token (JWT).

Page 12 of 12

Token Authentication Method: the way the APEX server makes a request to the authentication

provider.

Scope: all requests against the authentication provider must have

Authentication URI Parameters: if the authentication provider requires additional parameters for the

authorization endpoint, these can be specified here.

Username: the name of the username variable to be found in the returned tokens (access/ID) as used

by APEX to replace “nobody” in the current session.

Convert Username To Upper Case: determines if :APP_USER is returned in lower/upper case.

Additional User Attributes: additional information to be retrieved based on the given scope(s).

Map Additional User Attributes To: in which APEX item(s) should the user attribute(s) be stored?

In the given example, G_COSTCENTER is an application item in the app.

Verify Attributes: if an authentication provider lets you change ie. the e-mail address and APEX uses

this for authentication, then you want to make sure that this e-mail address first got verified by the user

(normally by clicking on a link in an e-mail sent to the new address). If the new address wasn’t verified

yet, the authentication provider can send a special attribute for this to APEX. When setting “Verify

Attributes” to “yes”, APEX will only accept the attribute if the provider tells APEX that the attribute

“<attribute>_verified” is set to “true”.

If this attribute is also used as “Username”, then APEX rejects to create a session.

Disclaimer:

Just to make sure: MT AG is not responsible for any damage, outages or loss of profit resulting from

the usage of this document. Use it at your own risk. Have fun!

	1 Introduction
	2 Architecture & Process flow
	3 Implementation Steps
	3.1 PreReqs
	3.2 Register the APEX Environment at Azure AD
	3.3 Enable OUTBOUND (SSL) Communication FROM APEX
	3.4 CreatE Web Credentials in THE APEX Workspace
	3.5 CreatE aN Authentication Scheme for the APEX app
	3.6 Switching Authentication Scheme in runtime
	3.7 Logging Out
	3.8 DEBUGGING

	4 Glossary
	4.1 attributes GENERIC OAUTH2 authentication scheme

